Music Ripping Tutorial — Atomix

Intro

This tutorial requires some knowledge of 68000 machine code. Regarding actual music ripping, | was
self taught originally on the C64 circa 1988, then | moved to ST. | will try and help where | can —
please direct any questions to the blog or via Facebook.

The Basics

A chip music normally has two routines, an initialisation routine which is executed once and a play
routine . The init routine normally sets things up , eg muting any current sound and accepting
parameters via data address registers to control things like sub-tunes, many files have multiple tunes
selectable — such as main music, his-core music, game over music etc.

As mentioned, a music routine needs to be played at regular intervals so the tune is timed. On the ST
we have a number of system timers which are synced to the built-in clock :-

VBL (Vertical Blank Line), this routine is executed every frame. On European ST’s this means once
every fiftieth of a second (50hz), American ST’s run at once every sixtieth of a second (60hz), this
means if we place a sound routine within the VBL routine it will normally play at a steady rate
irrespective of what else the machine is doing.

The VBL routine is located at memory location $70 (hexadecimal). It is possible to place your own
routine here or latch on to the original system routine. There is also a VBL queue located between
S4ce and S4ea, any routine here will also be executed every frame. Note, the location of this queue
can be changed, address $456 holds the location.

| will go into other timers MFP & the system DoSound in later tutorials if | get enough feedback!
Sound Chip

The ST sound chip (YM-2149) is located at $fff8800-Sfff8802 in memory, so every music player must
access and write to these memory addresses to make a sound (excluding STe DMA sample replay or
shadow registers — more of those in a later tutorial).

The Tools

For this tutorial | will use the Steem emulator, other emulators are available and of course real ST's.
Nearly all my early rips, in the GZH days were done using MonST.

However for ease of use and to simplify the hacking process I’'m using Steem. The tools you will
need are :-

Steem Debug v3.2 — | know later versions and SSE are available, but | like to use the most stable
version (unless a game fails on v3.2)

Devpac (including the MonST machine code monitor)
Easyrider v4 (disassembler)

Custom routines — Assembly source to create an SNDH file.

The Game

For this first tutorial | am going to rip the music from Atomix. I’'m using this game because it is
straight forward. The image of the game | will be using is available here (crack by Hotline).

| will be using Steem Debug 3.2 available here Note: this also includes UK TOS 1.02 , use of other
TOS versions may affect the memory locations quoted further on in this tutorial.

So load up Steem Debug, run the game until you see the title screen and the music playing.

-
=

You will notice when you use this version of Steem that another window appears, this is the main
debug window. It displays the contents of memory locations and data/address registers.

ﬁﬂ] The Boiler Room: Steem v3.2 — O

Debug Breakpoints Monitors Browsers Histery Log Options

pc=| FCODDD other sp=| 000000 screen=| 3F3000 Trace Into | Step Over ‘ Stop

so= [T ELT BRI T T TXINZIVIC al20 d[po [Runtonext VBL =
di-{ 00000000 d1-| 0000000 d2- 00000000 d3-| 00000000 d4= D00DOD0D d5| 00DDDDOD d6-| 0D0DD0DD d7-{ 0DDODOOD
a0l 00000000 a1-| 0000000 a2- 00000000 23| 00000000 a4= 000000 25| 00DDDO0D a6-| DODDD0DD a7-| 00000000

R..| B.] Mon | Address Hex Disassembly |Stack Display

fpc) FCO000 602E bra.s +46 {SFC0030}
FCODo2 0102 btst d0.d2 R..| B.l Mon | Address Hex Text Decimal
FCDOO4 DOFC de.w Sfc @0... 00000 602E . 24622w / B6b, 46b
FCOO00& 0030 0OFC... ori b #sfc,0jal.d0. W) 0ooDo2 0102 0 258w / 1b. 2b
FCOOOC 0000 8900 orb #8040 000004 0oOFC i 252w / Ob, 252b
FCOO10 DOFC de.w Sfc 0D0oDG 0030 .o 48w / Ob, 48b
FCOO012 0030 DOFE... o b Hefe -12(a0.a7.L) 0oooos 0000 . Ow / 0b, 0b
FCOO018 0422 1987 subib #387.4a2) OD000A 0000 . 0w / 0b,0b
FCOO01C 0007 OE96 orb H856.d7 QoooDoC 0000 . Ow / 0b. 0k
FCOO020 0000 7ESC orb H85c.d0 0DODDE 0000 . Ow / 0b, 0b
FCDO24 0000 DEG1 orb H861.d0 oDoo10 0000 . Ow / 0b.0b
FCO028 0000 B7CE onb Hécedl 0ooomz2 0000 . Ow / 0b. Ob
FCO02C 0000 000D orib #8040 0D0014 0000 . 0w / 0b,0b
FCOO30 46FC 2700 move HS2700.sr 000016 0000 . Ow / 0b.0b
FCO034 4ET0 reset 0oo018 0000 . Dw / 0b, Db
FCO036 OCBY FAS2... cmpil #8fa52235f $fa0000 DD0O1A oooo . Ow / 0b,0b

£ > £

Right press “Stop” in the debug window or hit the yellow arrow in the main Steem window to pause
emulation.

http://d-bug.me/shw/Atomix%20-%20Tr%20-%20Hotline.zip
http://d-bug.me/shw/steemdebug_v3_2.zip

The Steem debug windows should now look something like this :-

ﬁﬂ] The Boiler Room: Steem v3.2 - O >
Debug Breakpoints Monitors Browsers History Log Options
e D4 7F 28] other sp=| I5A41A screen=| 05A600 Trace Into ‘ Step Over ‘ Run ‘
s= [T B T ERTT T.T-XINEIV[c af20 dfpo [Runtonext VBL j| Go
dO<| DO0009A4 d1<{ 00048050 d2<| 00D0DDOA d3=| DDOOFFFF d4=| FFFFFFFF d5<| 0ODO03CD d6<| 00DOOOD0 d7< 00000777
al={ 00FCO7D0 a1=| 0000030C a2=| 00052876 a3=| 0005B110 a4=| 0005AGD0 =5<| 00000000 =5<| 00014666 a7-| 0005A3DE
R...| B.] Mon | Address Hex Dizazsembly |Stack Dizplay j
(pc) 047728 4239 OOFF... crb Sfffatb
47F2E 23FC 00D4... move #848028,548024 R..| B Mon | Address | Hex Text | Decimal
47738 21FC 00D4... move) H8477c. 8120w @7 05A3D8 2304 #1 8964w / 35b.4b
47F40 13FC 0DDS... moveb #38 §ffa21 05A3DA OOFC i 252w / Ob,252b
47748 13FC 00DS... moveb #SB,Sffalb 05A3DC 070C if 2w / 7b. 220b
D47F50 48E7 FFFE movem! d0-7/a0-6Aa7) 05A3DE 2300 t. B960.w / 35b.0b
D47F54 AEB9 0D04... jor 548534 05A3E0 OOFC Al 252w / 0b, 252b
D47F54 OCBS 5564... cmpil #555646620,58.W 05A3E2 0330 a0 2096w / 8b, 48b
47762 BOOE bra.s +14 {8047F72} 05A3E4 0004 0 4w / 0b,4b
47764 ACED OOFF.. movem.w $52c5¢.d0-7 05A3E6 AEDG i -20986w / 174b, b
47FEC 48F8 OOFF... movem! d0-7.58240.W 05A3E2 0000 i, Ow / 0b,0b
47F72 ACDF7FFF movem! (a7}+d0-7/a0-6 05A3EA 0000 i, 0w / 0b.0b
047F76 4EF9 ODFC...jmp SfcDéde 05A3EC 0000 . 0w / Ob,0b
M4TFFC 2FD8 move all-a7) 05A3EE OOF7 & 247w / 0b. 247
D47FFE 2079 0004... moveal $48024.a0 05A3F0 0000 . Ow / Ob,0b
47784 21D8 8244 movel (al}+$8244.m 05A3F2 0008 | 8w / Ob. 8b
< > < >

What this is showing is the current state of the system when we paused the game. You will notice
that PC (Program Counter) = $47f28. This shows the current instruction that is about to be executed
(at memory location $47f28). You can also see the contents of the 8 data and address registers. E.g.
data register 5 (D5) =$3c0.

You will normally find that when you pause a game the current instruction is either the start of the
VBL or an instruction with another timer. As | mentioned earlier, the VBL is normally where the
music routine is executed from.

So is $47f28 the VBL routine? Well let’s find out. On the drop downs click on “Browsers”, then “New
Memory Browser” in the memory address window at the very top left type $70 then return.

The memory browser will look like this (note some addresses may be different depending on your
TOS and memory settings within Steem)

Memory n
000070 - Find Up | Find Down Dump-> | [100Kb Load
R..| B.l Mon | Address Hex Disassembly Text Decimal Binary

000070 0004 7F28 68000 Level 4 Interupt (VBL.. .00 2346361 / 4w, 3255 0000DO00O O
000074 DOFC O7CE 68000 Level 5Intemupt fnot40 165170700 / 252w, ... DOO0OOOD 1
000078 DOFC O7CE 68000 Level 6 Intermupt (MFP... .o 16517070 / 252w, ... DOOD0OOOO 1
00007C DOFC O7CE 68000 Level 7Intermupt fnot40l 165170700 / 252w, ... DOO0OOOO 1
000080 20FC 0B5D Trap #0, __. . P 5533388801 / 8444 001000001

000084 OOFC 4FEE Trap #1(GEMDOS), __, _, .. .iiOn 165354061 / 252w, .. 00D0DD0O 1
000053 OOFE 3EAE Trap H2 (AESAVDI. _. . _ .b»1 166621821 / 254w, .. 0DDOODOO 1
00005C 23FC 0BSD Trap#3. . _. _ #iuoF 6037205281 4 9212 001000111
000050 24FC 0BS5S0 Trap 84, _. . _ SUDF 620457744) 7 5465... 001001001
000094 25FC 0B5D Trap #5. . _. #ulP 6372745601 / 9724 001001011
000092 26FC 0B5D Trap #6, . _ . _ iap 6540521761 / 9980.... 001001101
00009C 27FC OB5D Trap H7._._. __ 'ulf 6708293521 / 10236... 001001111
0000AD 28FC 0B5D Trap 8. _._ . _ (i0F 6876066081 / 10432... 001010001
0000A4 23FC 0B5D Trap #3. . _. _ JunP 704383824) 4 10748 001010011
0000AS 2AFC 0B5D Tep #10, _. . *udF 7211610400 7 11004, 001010101
0DD0AC 2BFC 0B50 Tmp#11, _. . _ +ulF 7379382561 4 11260... 001010111
0000BO 2CFC 0B50 Trap#12, . _ . JUnP 7547154721 4 11516 001011001
000084 00FC 07F8 Trap #13(BIOS). _. _. _ .ulm 165171121 / 252w, .. 00000000 1

< >

We know the VBL address is stored at location $70 in memory (the Steem disassembly column
actually describes what many of the memory addresses are, in this case 68000 Level 4 interrupt

VBL). So we can see the routine it is executing is stored at $47f28. So we can now be confident that

the code at $47f28 is run every 50" of a second (assuming you are using a European ST).

Right let’s take a closer look at the code located at $47f28 though | won’t go into the specifics of
each instruction.

i The Boiler Room: Steem v3.2 — O =
Debug Breakpoints Monitors Browsers History Log Options
DC=| 047728 other 59=|D&M1ﬁ screeﬂ=| 02AG00 Trace Into | Step Over | Run |
s=[TE.THRLTTXNEVIC af20 d[oo [Runtonet veL | Go |
dD=| 00000944 d1=| 00048050 d2=| 00000004 d3=| OD0OFFFF d4=| FFFFFFFF d5=| 000003C0 d6=| 00000000 d?=| 00000777
an=| 00FCO7D0 a1=| 0000090C a2=| 00052676 a3=| DD0SB110 a4=| 0005AG00 a5=| 00000000 a€=| 00014666 a?=| 0005A3D8

R. | B Mon | Address | Hex | Disassembly | stack Disolay ~|

D47F38 21FC 0004... move | #5477 7c.5120w

M7F7E 2075 0004... movea | 548024,a0 054 .
D47FE4 2108 8244 movel @0}+58244 w 054 Jumps to system routine.

ipc) 047F28 4239 OOFF... cirb Sfalb .
D47FZE 23FC 0004... move | #548028 S4802 kz Sets up MFP Timer [aEDE
&7 Ja 8964w / 35b,4b

D47FAD 13FC 00DO0B... move b H88,Sfa21 05430A O0OFC i 252w / Ob,252b
D47F48 13FC 0008... move b #38,3fffalb nRANC ATRC ait 2012w / 7h, 220b
D47FE0 48E7 FFFE moveml d0-7/afl6.4a7) . 8960w / 35b, 0b
D474 AEB9 0004 jr 848934 Executes Subroutine 252w / Ob. 252b
D47FEA OCES 5564.. cmpil HSE564620 S8.WW wRoOCE — woou wu 2096w / 8b, 48b
047FE2 G00E bra s +14 {3047F72} 05° 22 il - © ' 0b 4b
D47F64 4CE9 0OFF... movemw $52c5c d0-7 i’ Y w / 174b,86b
ets colour palette
D47FEC 43F8 00FF... movem| d0-7.58240.W 05 P 0b, 0b
D47F72 ACDF7FFF moveml {a7k+d0-7/a06 O5ASER™"UUTY — w7 0b, 0b
D47F76 4EFS 00FC... jmp SFcD&de 054
D47F7C 2F08 move l al.{a7) —

So looking at the above instructions none appear to be accessing the sound chip ($ffff8800 -
Sffff8802). The only unknown factor is what is happening in the sub routine (JSR $48934).

Well, once again add a memory browser window (Browser > New Memory Browser) and enter
$48934 as the start address.

Memaory n
|048934 [instuctions =] | | Find Up | Find Down || Dump> |[100 ~] Load |
F{| E.I Mon | Address | Hex | Disassembly |

048934 6000 DDEE bra | +See {S048A24}
6000 DODE bra | +Se {5048948}

4350 pea (@l)

41FA 0912 lea +5912(pc).a0 (8049252}

043542 move b d0,(@0)
048944 BF maveal {a7+al
048545 rts

043948 pea (@l)
048944 andi b #8140
04834E lea +572(pc).al (5049142}
048952 10C0 move b di,(@0)+
048954 10C0 move b di.@@0)}+
048956 10FC move b #50, a0k
048554 205F moveal [a7al
04895C 4E75 its

ovem | d0-7/a0-6,-a7)

a +5%0(pc).al (5049354}
048966 6100 DO5SC
048964 2274 DBDA

maogea | $8dajpc)al (3049246}

You will see that at address $48934 is another instruction. This time bra.l See (548A24). The BRA
instruction is short for ‘Branch’, this simply jumps to address $48A24.

So, once again change the memory address in the browser to $48A24.

048A24 |Instructions ﬂ

Find Up | Find Dowr|| Dump-> | [100kb | Load

R.. B] M.. | Address | Hex
048424 41FA 071C lea+$71c(pc).al {5049142}

048ABE 6BOC

048A90 4CEE 000F ..
048A% 48F8 000F .. movem.ld0-3.58800.W
048A3C 4E7B rts

Disassembly

048A28 4A10 tstb (aD)
04BA2A 6738 beq.s +56 {$048A64}
048A2C 5328 0001 subqb#1.1(a0)
048A30 BA32 bpl.s +50 {$048A64]

048A32 1150 0001 moveb(a0).1(a0)
048A36 5268 0002 addqw#1.2(a0)
048A3A 3028 0002 movew2(a0).d0
048A3E BO7C 000A cmp.w #$a.d0

048442 6BOA bne s +10 {S04BA4E}
048A44 4290 clr.l (a0)

048446 41FA 070A lea+$70a(pc).al {$049152}
048444 50D0 st (a0)

048A4C 6016 bra.s +22 {S048A64}

048A4E 41FA 06E0 lea+$6e0(pc).al {$049130}
048A52 1030 0000 move.b 0(al.d0.W).d0
048A56 41FA 0721 lea+$721(pc).al {3049179}
048ABA 1080
048A5C 1140 0036 move.b d0,54(a0)
(48A60 1140 006C move.b d0.+$6c(al)
048A64 4DFA 068C
048A68 4BFA 06E4
04BAGC 4A2D 0004
048A70 672C
048A72 4A2D 0005
04BA76 6624
048A78 50ED 0005
048A7C 7000
4BA7E 1D40 0022 move.b d0.34(a6)

048A82 1D40 0026 move.b d0,38(a6)

048A86 1D40 002A move.b d0.42(a6)

04BABA 123A 07C6 move.b $7c6(pc).d1 {3049252}
bne.s +12 {3048A9C}
movem.|+$1c(26),d0-3

move.b di.(al)

lea +$68c(pc).a6 {$0490F2}
lea +$6e4(pc).ab {$04914E}
tsth 4(a5)
beq.s +44 {$048A9E}

tstb 5(ab)

bne.s +36 {3048A9C}

st 5(ab)

moveq #0.d0

Here’s the code......

Scrolling down the routine, there are
lots of compares, clears and moves.

Keep going.... what's this?
movem.| d0-d3,58800.w
$8800.w is the sound chip!

As the instruction is using word
addressing (.w) this becomes
SFff8800.

So this instruction is moving the
contents of data registers d0,d1,d2 &
d3 to the sound chip.

| think we can therefore be pretty
confident the play routine is here!

So, is that it? Not quite, as | mentioned most music routines have an initialisation routine as well as

the play routine, plus many have exit routines too. So now we need to find the init rout! Luckily

most drivers, though not all, have a series of BRA's (branch instructions), or JMP’s (jump

instructions) at the beginning of the music driver which go to each if the routines, thanks Jochen!

Let’s go back to the original BRA called by the VBL routine.

04892C |Instructions ﬂ |

Find Up | Find Dowr|| Dump-> | [100Kb_

R..| B, M.. | Address
04892C
048930
(pc) 048934
048938
04893C
04893E
048942
048944
048946
048948
048944

Hex
6000 005A
6000 002C
6000 OODEE
6000 OODOE
4850
41FA 0912
1080
205F
4E75
4850
0200 O0D1F

Disassembly
bra I+35a {$048988}
bra 1+$2c {$04895E}

bra | +3ee {$D48A24}<
bra 1+$e {3048948}

pea (al)

lea +$912(pc).al {$049252}
move.b d0.(al)

moveal (a7)+al

s

pea (al)

andi.b #51f,.d0

Play

We know $48934 is the play
routine, but what about the
instructions at $4892C, $48930 and
$48938?

As | mentioned earlier most init routines take the value in dO and use this to select the tune number.
Well, let us check each....

$4892C branches to $48988 then branches to $48994

045994 Instruclmnsj |
R..| B] M.. | Addres,

dUp | Find Dowr] | Dump-> | [100Kb +

Disassembly

048994 lea +$3be(pc) a0 (S049354) This routine runs a subroutine, then tests (TST)
048998 612A bsr.s +42 {$0489C4} H

sesson ardd e do, before using the value as an offset from a1,
04899C 671C beq.s +28 {$0489BA} I|ke|y ca ndidate!

04899E 5340 subqw #1,d0

0489A0 227A 0BAD moveal38al(pc).al (3049242}
0489A4 COFC 0006 mulu #36.d0

0489A8 D2CO addawd0.al
0489AA 30719 move w (al)+di
0489AC 3219 movew (al)y+dl

489AE 4DFA07A0 lea +$7a0(pc).a6 {$049150}

$48930 branches to $4895e

Find Up | Find Dowr|| Dump-> | [100Kb

04B895E |Instuctions v

R..| B] M.. | Address Disassembly
04895E E7 FFFE movem.d0-7/al-6-(a7)
048962 41FA 09F0 lea +39f0(pc).al {$049354}
048966 6100 005C bsr.l+55c {$0489C4}
048964 227A D8DA moveal $38da(pc).al {$049246}

04836E D040 addw d0.d0 . . H .

046970 D04 i 0,60 This routine runs a subroutine before using d0
048972 D2CO addaw di.al (x4) as an offset from a1, likely candidate!
048974 4DFA0BDE lea +38d6(pc).ab {304924C}

048978 3C99 move.w (al)+(a6)

048974 7000 moveq #0,d0

04897C 3019 movew (al}+d0

$48938 branches to $48948

Instructions = ? Find Up |Find Dowrl Dump->| 100Kb
R..| B] M.. | Addres, e

Disassembly
048948 4850 pea (al)
04894A 0200 001F andib#$1f.d0

DG 1A 072 lea -S72(pe) 20 (S045142) This routine moves the contents of d0 into two

048952 10C0 '““”Ebd”-(am*< consecutive memory addresses, again a possible
048954 10CO0 move.b di.(al)}+

048956 10FC 0000 moveb #30,(a0)+ init subroutine!

04895A 205F movea.l (a7)+al

04895C 4E75 s

04895E 48E7 FFFE movem.l d0-7/al-6.(a7)
048362 41FA 09F0 lea +38f0(pc).al {$049354})
048966 6100 005C

So we are no further forward, any of the 3 routines could be the init routine. Well time to do some
testing!

So now we need to save the binary data to a file to test. To do this we use the dump function within
Steem. In MonST, memory can be saved similarly using the save function (“S” on the keyboard),
more of that later.

But where should we save from? And how much memory do we need to save? Well, we are pretty
confident that the play routine is at $48934, however the init could be any of the other 3 addresses.
So to be on the safe side we will save from the lower memory address which is $4892c. The length is
trickier, from experience most chip music files are under 35kb. Therefore we will save a 35kb chunk
of memory from $4892c.

Memory address to save from Select “Memory”, this ensures the data is saved
as binary. The “Instruction” setting saves the
memory as disassembled source code.

Length of memory to save in kilobytes.

04892C M Find Up | Find Down|| Dump-> | |35kb h .
emory _Find Up | Find Dowr e S Note: you can use the drop down, or type in the
R..| B M.. | Address | Hex Disassembly Text al

amount in KB.

04892C 6000 005A bra.|+$5a {$048988} T 1
048930 6000 002C bra.|+$2c {$04895E} TLo.L 16106127800
(pc) 048934 6000 OOEE bra.l+$ee {3048A24} Tooi 16106129741
048938 6000 O00E bra.l+$e {$048948} T..0 16106127501
04893C 4850 41FA pea(al) lea+$912(p.. HPAu 1213219322]
048940 0912 1080 maove.b di.(al) me 152178816.1

048944 205F 4E75 moveal(a7pal rs _Fu 5431169171
048948 4850 0200 pea(al) andib#S1EdOHE . 1213202944
(4834C 001F 41FA ..lea+72(pc).a0{304.. & 20485061/ :
048950 O7F2 10C0 _movebd0(ad) osah 1333045121 Then type “atomix” and save it

Finally click on Dump

< > to you preferred folder

You now have a possible music file on your hard-drive. Now to test and hopefully create your first
SNDH file!

| have created a floppy ST image containing the tools needed to create and test your SNDH.

Music Ripping Image file

Download this file boot Steem with the file in Drive A.

The disk should boot to desktop.

Next double click on genst2.prg, this is the Devpac assembler.

Now we want to test our music file, so click on file >> load >> test1.s
This is a very basic assemble program to test our music file.

We have given our binary music file the label “music”. As you can see the program goes into
supervisor mode, this is so we can access hardware directly. Then we save the current VBL routine
and install our own. At this point the music should play, then we wait for a key press then exit.

Note you will see we do BSR (branch subroutine) +8 in our VBL routine. This is because we saved
data from $4892c¢ but we think the play routine is located at $48934 (548934-54892¢ = 8). So want
to run the routine at music+8.

Ok, next we need to tell Steem where we saved the atomix binary file, note Steem Debug
automatically adds the DMP extension to save files (from Dump).

So imagine you saved the file to D:\music\atomix.dmp, we need to set up a virtual hard drive
pointing to this folder. So within Steem click on the Disk Manager Icon

LRI AN Y&

http://d-bug.me/shw/musicrip.st

Next click on Hard Drives, then map C:\ to your PC folder containing atomix.dmp

£3 Hard Drives X
IE Browse | Open | Remave |
[~ Disable All Hard Drives MNew Hard Drive |
When drive A is empty boot from IC:Ll | OK | Cancel |

Ok, let’s try and assemble this. Press ALT and A to assemble

You should see something like :-

g steem Engine -~ u} x
GO BB saspes
GenST Hacro Assembler Copyright g HiSoft 1985-91

i1l Rights Reserved - version 2.3

Pass 1
Pass 2

8 errors found .
42 lines assembled into 33938 bytes, executable relocatable code
624 bytes used out of 2988552, took 8.2 seconds

Press a key to exit

Now to test! Press a key after assembly , then press ALT and X (to execute our program)

d Steem Engine
CHO®EE

:

Oh dear! Not good!

Let’s look again at the source. Ahhh we are not running the initialise routine, we are simply running
the play routine. As well as setting up sub tunes most init routines also set up tables and pointers.
No wonder it didn’t work!

Ok now load up test2.s

This time we have added an initialise routine call (bsr music) , well we think it is that routine (+0).
Remember it could also be $48930 (+4) or $48938 (+5c¢)

Right let us try now.....
Assemble/Execute - Silence but no bombs!
Now change the bsr music to bsr music+4 — bombs!

Finally change to music+$c — bombs!!

So it appears running music+0 (the first BRA routine) stops the music from crashing but we are
hearing no sound ®

Now a golden rule. When ripping music always try to save the music before the music has initialised.
If you remember we froze the Atomix music whilst it was playing, so the init routine will have
already been executed.

Ok, so we need to freeze the game before init. How? Well... we think the init routine is at $4892c, so
Steem gives us a nifty feature which stops emulation at any instruction (a breakpoint). Let’s try that!

Within Steem open the memory browser and go to address $4892C. Now click in the “B” column to
set a break point (a red dot appears). This means Steem will now stop if an instruction at $4892C is

executed.

Find Up | Find Down| | Dump-> | 35kb

R..| BAS® | Address | Hex Disassembly Text | Decimal
@ 04892C C108 0000 abcd-(al)-(al) orib. &1.. -1056440320
048930 C1FB 0000 .. ori.b #3%0,d0 Am. . -1040711680
048934 0000 0000 .. orib#$0.d0 oo 0 0w 0w
048938 0000 0000 .. orib#$0.d0 oo 0 0w, 0w
04893C 0000 0000 .. orib#3$0.d0 oo 0 0w 0w
048940 0000 0000 .. orib#$0.d0 oo 0 0w, 0w
048944 0000 0000 .. orib #3$0,d0 oo 0 0w, 0w I
048948 0000 OOF9 . dcw3f oo 2491/ 0w, 2
04894C 05C2 01C3 bsetd2d2 bsetd0.d3 ook 966005151 /
048950 063C 79FF dcw3$63c dcw$79F o0ovy 104626687
< >

On main boiler room menu ensure “Stop On Breakpoints” is selected!

Now we need to reboot Steem with the Atomix image in the drive again. NOTE remember to switch
off hard-drives in Steem (“Disable All Hard Drives” in the hard drive menu). This makes sure the
program loads at the same address as originally.

This time when you run Atomix it should break , showing “Hit breakpoint at address $04892C”. This
means we have caught the player before it inits!

Click ok and save the memory as before (35kb from $4892C)

Now reboot Steem and load genst2 and assemble test2.s again
(remember to turn hard-drives back on!)

Execute....and..... ta da.... the title music should be playing! Well done ©

At this point you have reached the level of most 80s/90s music rippers, however one small step left.
To make the music into an SNDH file. SNDH began life as a simple wrapper thought up by BDC of
Aura (hiJochen!), later myself and Evil progressed the format and continue to do so!

The SNDH header is basically the music you have just ripped with information tagged onto the front,
such as music title, composer and number of subtunes.

All SNDH’s use the same initial structure :

BRA initialise +0
BRA exit +4
BRA play +8

So if you check test3.s | have added a basic SNDH header, you will notice it’s very similar to the
original test2.s play routine. The only major difference is that we execute via the sndh label as
opposed to the music label.

More info regarding the SNDH header can be found at the official SNDH site.

Right last lap....

To save the SNDH file we need to save data between the “sndh” label and the “endsndh” label. The

easiest way is via MonST. So assemble the source code as normal (ALT-A)

However this time press ALT-D (to debug). This allows you to step through the code. All we need to
do is save the data between those two labels... so press “S” to save, then type atomix.snd (filename)

For the “start address,end” enter sndh,endsndh-1
This will save the SNDH file!

Control C out to devpac

And Quit back to GEM

Now to test.... Double click on snd_player.prg

And load your SND file ©

Filaname: ATON

Filezize,

&5

BT iz Totd 2103144

That’s just a basic SNDH, the finished article would need a proper exit routine (muting the sound
chip) and also the file would need trimming to the correct length (35kb is way too long!) but this is
just a taster.

Phew... that’s quite a lengthy explanation. But now you can see how it’s done. Have a play around
and experiment. Any comments, help etc. to me via the SNDH blog or via Facebook or twitter

Next time, if there is a next time, | may cover more advanced topics like, non PC-relative tunes, MFP,
XBIOS, multi-hz tunes, shadow registers, swapping MFP timers, making tunes OS friendly and adding
sid voices to classic YM tunes.

Thanks to ggn/d-bug/kiia and tronic/effect for testing this tutorial.

grazey/psycho hacking force - SNDH administrator
April 2020

http://sndh.atari.org/
http://d-bug.me/sndh/
https://www.facebook.com/psychohackingforce/
https://twitter.com/grazeyphf

